Принцип получения тепла с помощью теплового насоса отличается от традиционных систем нагрева, основанных на сжигании газа или жидкого топлива, а также прямого преобразования электрической энергии в тепловую. В таких системах единица энергии энергоносителя преобразуется в неполную единицу тепловой энергии. В то время как тепловой насос, затрачивая единицу электрической энергии, «перекачивает» в помещение от 2 до 6 единиц тепловой энергии, забирая ее из наружного воздуха.
В системах ZUBADAN применяется метод парожидкостной инжекции. В режиме обогрева
давление жидкого хладагента, выходящего из конденсатора, роль которого выполняет
теплообменник внутреннего блока, немного уменьшается с помощью расширительного
вентиля LEV B. Парожидкостная смесь (точка 3) поступает в ресивер Power Receiver. Внутри
ресивера проходит линия всасывания, и осуществляется обмен теплотой с газообразным
хладагентом низкого давления. За счет этого температура смеси снова понижается (точка 4), и
жидкость поступает на выход ресивера. Далее некоторое количество жидкого хладагента
ответвляется через расширительный вентиль LEV C в цепь инжекции — теплообменник HIC.
Часть жидкости испаряется, а температура образующейся смеси понижается. За счет этого
охлаждается основной поток жидкого хладагента, проходящий через теплообменник HIC
(точка 5). После дросселирования с помощью расширительного вентиля LEV A (точка 6) смесь
жидкого хладагента и образовавшегося в процессе понижения давления пара поступает в
испаритель, то есть теплообменник наружного блока. За счет низкой температуры испарения
тепло передается от наружного воздуха к хладагенту, и жидкая фаза в смеси полностью
испаряется (точка 7). В результате прохода через трубу низкого давления в ресивере Power
Receiver перегрев газообразного хладагента увеличивается, и фреон поступает в компрессор. Кроме того, этот ресивер сглаживает колебания
промежуточного давления при флуктуациях внешней тепловой нагрузки, а также гарантирует подачу на расширительный вентиль цепи инжекции
только жидкого хладагента, что стабилизирует работу этой цепи.
Часть жидкого хладагента, ответвленная от основного потока в цепь инжекции, превращается в парожидкостную смесь среднего давления. При
этом температура смеси понижается, и она подается через специальный штуцер инжекции в компрессор, осуществляя полное промежуточное
охлаждение хладагента в процессе сжатия и обеспечивая тем самым расчетную долговечность компрессора.
Расширительный вентиль LEV B задает величину переохлаждения хладагента в конденсаторе. Вентиль LEV A определяет перегрев в испарителе,
а LEV C поддерживает температуру перегретого пара на выходе компрессора около 90°С. Это происходит за счет того, что, попадая через цепи
инжекции в замкнутую область между спиралями компрессора, двухфазная смесь перемешивается с газообразным горячим хладагентом, и
жидкость из смеси полностью испаряется. Температура газа понижается. Регулируя состав парожидкостной смеси, можно контролировать
температуру нагнетания компрессора. Это позволяет не только избежать перегрева компрессора, но и оптимизировать теплопроизводительность
конденсатора.
mitsubishi-aircon.ruZubadanСледовало бы посетить
SHKСкрытый текстКарно цикл
Рис. 1 Цикл Карно (диаграмма)
Рис. 2 Работа тепловой машины по циклу Карно (схема)
Карно цикл, обратимый круговой процесс, в котором совершается превращение теплоты в работу (или работы в теплоту). К. ц. состоит из последовательно чередующихся двух изотермических и двух адиабатных процессов. Впервые рассмотрен французским учёным Н. Л. С. Карно (1824) как идеальный рабочий цикл теплового двигателя. Превращение теплоты в работу сопровождается переносом рабочим телом двигателя определённого количества теплоты от более нагретого тела (нагревателя) к менее нагретому (холодильнику).
К. ц. осуществляется следующим образом: рабочее тело (например, пар в цилиндре под поршнем) при температуре T1 приводится в соприкосновение с нагревателем, имеющим постоянную температуру T1, и изотермически получает от него количество теплоты dQ1 (при этом пар расширяется и совершает работу). На рис. 1 этот процесс изображен отрезком изотермы AB. Затем рабочее тело, расширяясь адиабатически (по адиабате BC), охлаждается до температуры T2. При этой температуре, сжимаясь изотермически (отрезок CD), рабочее тело отдаёт количество теплоты dQ2 холодильнику с температурой T2. Завершается К. ц. адиабатным процессом (DA на рис. 1), возвращающим рабочее тело в исходное термодинамическое состояние. При постоянной разности температур (T1 — T2) между нагревателем и холодильником рабочее тело совершает за один К. ц. работу
Эта работа численно равна площади ABCD (рис. 1), ограниченной отрезками изотерм и адиабат, образующих К. ц.
К. ц. обратим, и его можно осуществить в обратной последовательности (в направлении ADCBA). При этом количество теплоты dQ2 отбирается у холодильника и вместе с затраченной работой dА (превращенной в теплоту) передаётся нагревателю. Тепловой двигатель работает в этом режиме как идеальная холодильная машина.
К. ц. имеет наивысший кпд h =dA/dQ1 = (T1 — T2)/T1 среди всех возможных циклов, осуществляемых в одном и том же температурном интервале (T1 — T2). В этом смысле кпд К. ц. служит мерой эффективности др. рабочих циклов.
x
скажите, какой мощности нужен электрический калорифер чтобы нагреть воздух с -39 до 20 градусов при расходе воздуха в 5000м3/ч???